Improved statistical tests for differential gene expression by shrinking variance components estimates.
نویسندگان
چکیده
Combining information across genes in the statistical analysis of microarray data is desirable because of the relatively small number of data points obtained for each individual gene. Here we develop an estimator of the error variance that can borrow information across genes using the James-Stein shrinkage concept. A new test statistic (FS) is constructed using this estimator. The new statistic is compared with other statistics used to test for differential expression: the gene-specific F test (F1), the pooled-variance F statistic (F3), a hybrid statistic (F2) that uses the average of the individual and pooled variances, the regularized t-statistic, the posterior odds statistic B, and the SAM t-test. The FS-test shows best or nearly best power for detecting differentially expressed genes over a wide range of simulated data in which the variance components associated with individual genes are either homogeneous or heterogeneous. Thus FS provides a powerful and robust approach to test differential expression of genes that utilizes information not available in individual gene testing approaches and does not suffer from biases of the pooled variance approach.
منابع مشابه
Local-pooled-error test for identifying differentially expressed genes with a small number of replicated microarrays
MOTIVATION In microarray studies gene discovery based on fold-change values is often misleading because error variability for each gene is heterogeneous under different biological conditions and intensity ranges. Several statistical testing methods for differential gene expression have been suggested, but some of these approaches are underpowered and result in high false positive rates because ...
متن کاملImproving statistical inference for gene expression profiling data by borrowing information
Gene expression profiling experiments, in particular, microarray experiments, are popular in genomics research. However, in addition to the great opportunities provided by such experiments, statistical challenges also arise in the analysis of expression profiling data. The current thesis discusses statistical issues associated with gene expression profiling experiments and develops new statisti...
متن کاملImproved statistical inference from DNA microarray data using analysis of variance and a Bayesian statistical framework. Analysis of global gene expression in Escherichia coli K12.
We describe statistical methods based on the t test that can be conveniently used on high density array data to test for statistically significant differences between treatments. These t tests employ either the observed variance among replicates within treatments or a Bayesian estimate of the variance among replicates within treatments based on a prior estimate obtained from a local estimate of...
متن کاملBorrowing information across genes and experiments for improved error variance estimation in microarray data analysis.
Statistical inference for microarray experiments usually involves the estimation of error variance for each gene. Because the sample size available for each gene is often low, the usual unbiased estimator of the error variance can be unreliable. Shrinkage methods, including empirical Bayes approaches that borrow information across genes to produce more stable estimates, have been developed in r...
متن کاملA new efficient statistical test for detecting variability in the gene expression data.
DNA microarray technology allows researchers to monitor the expressions of thousands of genes under different conditions. The detection of differential gene expression under two different conditions is very important in microarray studies. Microarray experiments are multi-step procedures and each step is a potential source of variance. This makes the measurement of variability difficult because...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biostatistics
دوره 6 1 شماره
صفحات -
تاریخ انتشار 2005